3.3 Laws of Logarithms - 对数法则

知识点总结与练习题

核心知识点

1. 乘法法则 (Multiplication Law)

核心概念 (Core Concept):两个同底对数的和等于它们真数乘积的对数。

  • \(\log_a x + \log_a y = \log_a(xy)\)
  • 适用于同底对数的加法
  • 真数必须为正数

应用场景 (Application):将多个对数合并为单个对数。

2. 除法法则 (Division Law)

定义 (Definition):两个同底对数的差等于它们真数商的对数。

  • \(\log_a x - \log_a y = \log_a\left(\frac{x}{y}\right)\)
  • 适用于同底对数的减法
  • 真数必须为正数

重要原则 (Important Principle):对数的减法对应真数的除法。

3. 幂法则 (Power Law)

核心原则 (Core Principles):

  • \(\log_a(x^k) = k\log_a x\)
  • 真数的幂可以提到对数前面
  • 适用于任何实数指数
  • 特殊情况:\(\log_a\left(\frac{1}{x}\right) = -\log_a x\)

关键词汇表

对数法则 Laws of Logarithms
乘法法则 Multiplication Law
除法法则 Division Law
幂法则 Power Law
真数 Argument
底数 Base

例题解析

Example 1: 合并对数

题目:将 \(\log_3 6 + \log_3 7\) 写成单个对数

解答

解题步骤说明:

  • 步骤1:使用乘法法则 \(\log_a x + \log_a y = \log_a(xy)\)
  • 步骤2:\(\log_3 6 + \log_3 7 = \log_3(6 \times 7)\)
  • 步骤3:\(\log_3(6 \times 7) = \log_3 42\)
  • 结论:最终答案为 \(\log_3 42\)

Example 2: 展开对数

题目:将 \(\log_a(x^2yz^3)\) 用 \(\log_a x\)、\(\log_a y\)、\(\log_a z\) 表示

解答

解题步骤说明:

  • 步骤1:\(\log_a(x^2yz^3) = \log_a(x^2) + \log_a y + \log_a(z^3)\)
  • 步骤2:使用幂法则 \(\log_a(x^2) = 2\log_a x\)
  • 步骤3:使用幂法则 \(\log_a(z^3) = 3\log_a z\)
  • 最终答案:\(2\log_a x + \log_a y + 3\log_a z\)

Question 1

将以下表达式写成单个对数:

a) \(\log_2 7 + \log_2 3\)

b) \(\log_2 36 - \log_2 4\)

c) \(3\log_5 2 + \log_5 10\)

d) \(2\log_6 8 - 4\log_6 3\)

e) \(\log_{10} 5 + \log_{10} 6 - \log_{10}\left(\frac{1}{4}\right)\)

答题区域:

Question 2

将以下表达式写成单个对数,然后简化答案:

a) \(\log_2 40 - \log_2 5\)

b) \(\log_6 4 + \log_6 9\)

c) \(2\log_{12} 3 + 4\log_{12} 2\)

d) \(\log_8 25 + \log_8 10 - 3\log_8 5\)

e) \(2\log_{10} 2 - (\log_{10} 5 + \log_{10} 8)\)

答题区域:

Question 3

用 \(\log_a x\)、\(\log_a y\) 和 \(\log_a z\) 表示:

a) \(\log_a(x^3y^4z)\)

b) \(\log_a\left(\frac{x^5}{y^2}\right)\)

c) \(\log_a(a^2x^2)\)

d) \(\log_a\left(\frac{x}{z\sqrt{y}}\right)\)

e) \(\log_a\sqrt{ax}\)

答题区域:

Question 4

解以下方程:

a) \(\log_2 3 + \log_2 x = 2\)

b) \(\log_6 12 - \log_6 x = 3\)

c) \(2\log_5 x = 1 + \log_5 6\)

d) \(2\log_9(x + 1) = 2\log_9(2x - 3) + 1\)

提示:必要时将对数移到同一边,使用除法法则。

答题区域:

Question 5

a) 给定 \(\log_3(x + 1) = 1 + 2\log_3(x - 1)\),证明 \(3x^2 - 7x + 2 = 0\)。(5分)

b) 因此,或其他方法,解 \(\log_3(x + 1) = 1 + 2\log_3(x - 1)\)。(2分)

答题区域:

Question 6

给定 \(a\) 和 \(b\) 是正常数,且 \(a > b\),解联立方程:

\(a + b = 13\)

\(\log_6 a + \log_6 b = 2\)

问题解决:仔细注意题目中给出的 \(a\) 和 \(b\) 的条件。

答题区域:

答案与解析

Question 1 解析

a) \(\log_2 7 + \log_2 3 = \log_2(7 \times 3) = \log_2 21\)

b) \(\log_2 36 - \log_2 4 = \log_2\left(\frac{36}{4}\right) = \log_2 9\)

c) \(3\log_5 2 + \log_5 10 = \log_5 2^3 + \log_5 10 = \log_5 8 + \log_5 10 = \log_5(8 \times 10) = \log_5 80\)

d) \(2\log_6 8 - 4\log_6 3 = \log_6 8^2 - \log_6 3^4 = \log_6 64 - \log_6 81 = \log_6\left(\frac{64}{81}\right)\)

e) \(\log_{10} 5 + \log_{10} 6 - \log_{10}\left(\frac{1}{4}\right) = \log_{10}(5 \times 6) - \log_{10}\left(\frac{1}{4}\right) = \log_{10} 30 - \log_{10}\left(\frac{1}{4}\right) = \log_{10}\left(\frac{30}{\frac{1}{4}}\right) = \log_{10} 120\)

答案:a) \(\log_2 21\);b) \(\log_2 9\);c) \(\log_5 80\);d) \(\log_6\left(\frac{64}{81}\right)\);e) \(\log_{10} 120\)
Question 2 解析

a) \(\log_2 40 - \log_2 5 = \log_2\left(\frac{40}{5}\right) = \log_2 8 = 3\)

b) \(\log_6 4 + \log_6 9 = \log_6(4 \times 9) = \log_6 36 = 2\)

c) \(2\log_{12} 3 + 4\log_{12} 2 = \log_{12} 3^2 + \log_{12} 2^4 = \log_{12} 9 + \log_{12} 16 = \log_{12}(9 \times 16) = \log_{12} 144 = 2\)

d) \(\log_8 25 + \log_8 10 - 3\log_8 5 = \log_8(25 \times 10) - \log_8 5^3 = \log_8 250 - \log_8 125 = \log_8\left(\frac{250}{125}\right) = \log_8 2 = \frac{1}{3}\)

e) \(2\log_{10} 2 - (\log_{10} 5 + \log_{10} 8) = \log_{10} 2^2 - \log_{10}(5 \times 8) = \log_{10} 4 - \log_{10} 40 = \log_{10}\left(\frac{4}{40}\right) = \log_{10}\left(\frac{1}{10}\right) = -1\)

答案:a) 3;b) 2;c) 2;d) \(\frac{1}{3}\);e) -1
Question 3 解析

a) \(\log_a(x^3y^4z) = \log_a(x^3) + \log_a(y^4) + \log_a z = 3\log_a x + 4\log_a y + \log_a z\)

b) \(\log_a\left(\frac{x^5}{y^2}\right) = \log_a(x^5) - \log_a(y^2) = 5\log_a x - 2\log_a y\)

c) \(\log_a(a^2x^2) = \log_a(a^2) + \log_a(x^2) = 2\log_a a + 2\log_a x = 2 + 2\log_a x\)

d) \(\log_a\left(\frac{x}{z\sqrt{y}}\right) = \log_a x - \log_a(z\sqrt{y}) = \log_a x - (\log_a z + \log_a\sqrt{y}) = \log_a x - \log_a z - \frac{1}{2}\log_a y\)

e) \(\log_a\sqrt{ax} = \log_a(ax)^{\frac{1}{2}} = \frac{1}{2}\log_a(ax) = \frac{1}{2}(\log_a a + \log_a x) = \frac{1}{2}(1 + \log_a x)\)

答案:a) \(3\log_a x + 4\log_a y + \log_a z\);b) \(5\log_a x - 2\log_a y\);c) \(2 + 2\log_a x\);d) \(\log_a x - \log_a z - \frac{1}{2}\log_a y\);e) \(\frac{1}{2}(1 + \log_a x)\)
Question 4 解析

a) \(\log_2 3 + \log_2 x = 2\)

\(\log_2(3x) = 2\)

\(3x = 2^2 = 4\)

\(x = \frac{4}{3}\)

b) \(\log_6 12 - \log_6 x = 3\)

\(\log_6\left(\frac{12}{x}\right) = 3\)

\(\frac{12}{x} = 6^3 = 216\)

\(x = \frac{12}{216} = \frac{1}{18}\)

c) \(2\log_5 x = 1 + \log_5 6\)

\(\log_5 x^2 = \log_5 5 + \log_5 6\)

\(\log_5 x^2 = \log_5(5 \times 6) = \log_5 30\)

\(x^2 = 30\)

\(x = \sqrt{30}\)(因为 \(x > 0\))

d) \(2\log_9(x + 1) = 2\log_9(2x - 3) + 1\)

\(\log_9(x + 1)^2 = \log_9(2x - 3)^2 + \log_9 9\)

\(\log_9(x + 1)^2 = \log_9[9(2x - 3)^2]\)

\((x + 1)^2 = 9(2x - 3)^2\)

解这个二次方程得到 \(x = 2\) 或 \(x = \frac{8}{5}\)

答案:a) \(x = \frac{4}{3}\);b) \(x = \frac{1}{18}\);c) \(x = \sqrt{30}\);d) \(x = 2\) 或 \(x = \frac{8}{5}\)
Question 5 解析

a) \(\log_3(x + 1) = 1 + 2\log_3(x - 1)\)

\(\log_3(x + 1) = \log_3 3 + \log_3(x - 1)^2\)

\(\log_3(x + 1) = \log_3[3(x - 1)^2]\)

\(x + 1 = 3(x - 1)^2\)

\(x + 1 = 3(x^2 - 2x + 1)\)

\(x + 1 = 3x^2 - 6x + 3\)

\(0 = 3x^2 - 7x + 2\)

因此 \(3x^2 - 7x + 2 = 0\)

b) 解 \(3x^2 - 7x + 2 = 0\):

\((3x - 1)(x - 2) = 0\)

\(x = \frac{1}{3}\) 或 \(x = 2\)

检查:当 \(x = \frac{1}{3}\) 时,\(x - 1 = -\frac{2}{3} < 0\),不满足对数定义域

当 \(x = 2\) 时,\(x + 1 = 3 > 0\) 且 \(x - 1 = 1 > 0\),满足条件

答案:a) 证明完成;b) \(x = 2\)
Question 6 解析

从第二个方程:\(\log_6 a + \log_6 b = 2\)

\(\log_6(ab) = 2\)

\(ab = 6^2 = 36\)

联立 \(a + b = 13\) 和 \(ab = 36\):

设 \(a\) 和 \(b\) 是方程 \(t^2 - 13t + 36 = 0\) 的根

\((t - 4)(t - 9) = 0\)

\(t = 4\) 或 \(t = 9\)

由于 \(a > b\),所以 \(a = 9\),\(b = 4\)

答案:\(a = 9\),\(b = 4\)